Our Energy Future: Lecture by Prof Tom Meyer

Prof Tom Meyer, Energy Frontier Research Centre, University of North Carolina, was in Dublin to participate in a Dublin Region Higher Education Alliance Master Class on Solar Energy. Afterwards, he gave a public lecture on “Our Energy Future: Science, Technology and Policy Challenges for the 21st Century – A US Perspective“. The lecture was held at TCD, and was sponsored by the Royal Society of Chemistry Republic of Ireland Local Section. It considered the various current and future world energy demands, and the role renewable energies have to play in providing this energy. My summary is given below.

Prof Thomas J Meyer has been researching the photochemistry of ruthenium complexes since the late 1960’s. Much of what we know about electron transfer in ruthenium polypyridyl complexes today is due to work conducted by Meyer and others in this period. Meyer worked with Henry Taube, who won the Nobel Prize in 1983 “for his work on the mechanisms of electron transfer reactions, especially in metal complexes”, publishing a paper with him in Inorganic Chemistry (1968) on excited state oxidation potentials of ruthenium-amine complexes. This work was an important pre-cursor to a 1973 paper published by Taube, Meyer and co-workers on the reduction of oxygen by these complexes. In the mid-1970’s, at a time when the oil crisis of the time was reaching a peak, Meyer published a series of important papers in Journal of American Chemical Society on the nature and kinetics of quenching of ruthenium amine complexes (including ruthenium – tris-bipyridyl) which gave great kinetic and mechanistic insight into the electron transfer between the metal complexes and an array of quenchers. Meyer reiterated in an article written in 1975 the importance of understanding electron transfer in the study of energy conversion, especially so with metal complexes as these absorb strongly at wavelengths of solar interest.

Prof Meyer, speaking at TCD on "Our Energy Future"

A surge of interest in these systems was observed the oil crisis, which faded somewhat in the 80’s and it wasn’t until Gratzel’s work on dye-sensitised solar cells, reported in 1990, that generated efficiencies that would allow for devices to become realistic contributors to energy supply. Since that itme, work has been concentrating on enhancing light absorption capacity, currently champoined by a ruthrnium dy “N3” (see DSSC post), as well as considering and optimising electron transfer processes in the solar cell devices.

Meyer’s lecture in TCD considered the current and future status of energy demands. It was a message he has delivered to the american political system, across administrations, during his tenure at the Los Alamos National Laboratory. Meyer reported that in the US, energy costs make up 7 – 10% of the cost of living, and 7% of overall world trade. A large demand in energy increase has been observed since 1900’s and this surge is expected to continue until at least 2100. While current stable economies’ energy usage will level off, emerging and transitional ecomomies (China, India, etc) will place major demands on the world’s energy supply. In the six years since 1999, China and India increased their energy usage by 80% and 25%, respectively (Cicerone). (A presentation by Cicerone, Preseident of the National Academy of Sciences is reference below and places thes enegy demands in context). In summation, >100 TW of additional ‘clean’ energy will be required by 2100.

The US currently uses 26% of the world’s oil supply, greater than the next five net using countries combined. 26% of the world’s oil is in the middle-east. Globally, the cost of oil is increasingly expensive to extract, as reserves become more and more difficult to source. Therefore additional energies from alternate sources is required to factor the loss in and increasing expensive of oil production; as well as the surge in energy demand from emerging economies. In addition, this energy supply must be in the context of envrironmental considerations, primarily global warming.

Meyer outlined several strategies to large scale energy production. Principal among these were nuclear, solar, and clean hydrocarbons. These and others are considered below.

Coal currently supplies 27% of the world’s energy demands, including half of US energy needs. It is also responsible for 35% of US carbon dioxide emissions. In principle, it could provide increased energy requirements until 2050, if 1% of GDP was used in dealing with carbon dioxide sequestration. The story of coal usage inclues the story of FutureGen – an initiative announced by the Bush administration in 2003. This was aimed at using coal as a clean fuel, with achieved targets of 275 MW of energy production with 90% carbon dioxide sequestration. However, the project was cancelled by the Bush administration in Jan 2008, due to massive cost overruns ($900M). The Obama adminsitration has restarted this work (June 2009), recognising that clean coal will be a crucial element to supplying energy demands in the forseeable future. Oil shale and tar sands are estimated to contain 2 trillion barrels of oil. However, it expensive (requireing a lot ofwater) and enviornmentally damaging to extract oil from these reserves.

Hyrdogen fuel is obtained from a variety of sources – primarily methane, but also from coal extraction and water electrolysis. In the latter case, electrolysis of water to produce hydrogen (and oxygen) is utililised by photochemical processes. Meyer identified the Idaho National Laboratory hydrogen programme as one which was making good progress in the production of hydrogen as a mass fuel. The advantages of hydrogen were good efficiency, and water and heat as emission products. However, the current costs (for transportation) are ca. $3500/kW, with a target of $35/kW. Another significant problem with the use of hydrogen was storage and transportation, which were expensive because of the nature of the fuel.

Nuclear energy provids ~20% of US energy, and increased usage would result in a significant decrease in greenhouse gases. There are 44 nuclear reactors currently being built internationally, and therefore these will be significnat contributors in to the future. The issues, well know, of nuclear power are what to do with waster, control (political issue), reprocessing and general safety issues.

Renewable energies provide an alternative approach to the solution. It is estimated that wind could provide 20% of US energy requirements. However, solar energy is a real viable option, given that 26,000TW per year of sunclight isiincident on the Earth’s surface (net amount after absorption etc). the technology is on the cusp of mass implementation, with some lingering problems regarding efficiencies. (In the US, there are also problems regardingthe arrangement of the national grid (see Grid 2030 project). Current estimates are that solar generation of 3 TW, assuming 10% efficiency solar cells, would cost approximately $60 Trillion (covering an area of 57k sq – miles). Current and future work will be focussed on reducing this cost.

Meyer reiterated the point in his talk, and again in questions, that there must be a political will to drive this work forward. Solar energy could have emerged as a major player much earlier, if work started after the oil crisis had continued apace. 6% of US energy is currently sourced from renewable sources; with 85% from coal, oil and gas. The hope is that by 2059, these numbers can be reversed!


C. R. Bock, T. J. Meyer, D. G. Whitten, Photochemistry of transition metal complexes. Mechanism and efficiency of energy conversion by electron-transfer quenching, J. Amer. Chem. Soc., 1975, 97, 2909 – 2911.

R. J. Cicerone, National Academy of Sciences, Address to the 145th Annual Meeting, available at: http://www.nationalacademies.org/includes/NASmembers2008.PDF [Oct 2009]

Las Alamos National Lab: National Security Science: http://www.lanl.gov/ [Oct 2009]

T. J. Meyer and H. Taube, Electron transfer reactions of ruthenium ammines, Inorg. Chem., 1968, 7, 2369 – 2371.

J. R. Pladziew, T. J. Meyer, J. A. Broomhea, and H. Taube, Reduction of oxygen by hexamammineruthenium(II) and by tris (ethylenediamine) ruthenium (II), Inorg. Chem., 1973, 12, 639 – 643.

H. Taube, Nobel Prize Lecture Nobel Prize 1983, http://nobelprize.org/nobel_prizes/chemistry/laureates/1983/taube-lecture.html [Oct 09]

R. C. Young, T. J. Meyer and D. G. Whitten, Kinetic relaxation measurement of rapid electron-transfer reactions by flash photlysis – conversion of light energy into chemical energy using Ru(bpy)3(3+)-Ru(bpy)3(2+*) couple, J. Amer. Chem. Soc., 1975, 97, 4781 – 4782.


Metal Oxide Photocatalysis

Metal oxide photocatalysis is based on the use of metal oxides (for example titanium dioxide) as light-activated catalysts in the destruction of organic and inorganic materials and in organic chemistry synthesis. In this article, we will be looking at the use of thee types of materials in the degradation of organic matter, which has applicability in environmental remediation (aqueous and air-borne) and self-cleaning surfaces. The technique is already widely used in commercial applications, but is still hampered by one significant limitation. These materials generally absorb primarily ultra-violet light, and research in recent years has been concentrating on developing visible-light active materials, with an emphasis on nano-particulate materials to maximize surface area. This article discusses the background to metal oxide photocatalysis, using titanium dioxide as the exemplar material, and looks at strategies being researched to enhance the photocatalytic efficiency.


Titanium dioxide is a white powder, with titanium in oxidation state IV. Its d-electron configuration is therefore d0, and the white colour is explained by the lack of d-d or metal centred transitions. It exists in several polymorphs – two of interest here: anatase and rutile. As it is a semiconductor, its HOMO is termed a valence band and LUMO is termed a conduction band. Light absorption effectively results in a ligand to metal charge transfer, electrons from oxygen are transferred to the vacant titanium d-orbitals. For anatase (3.2 eV) and rutile (3.0 eV), this transition is in the UVA region, resulting in a sharp absorption band at 390 – 400 nm.

Looking more closely at the electronic processes, promotion of an electron to the conduction band, on irradiation by UV light, results in a ‘hole’ in the valence band – essentially a detriment of the electron density that was localised on that orbital, and usually assigned a positive charge to symbolize the loss of negative electron (of course negative and positive are just arbitrary notations). The hole is powerfully oxidizing – the orbital very much wants to retrieve electron density just lost after light irradiation. It can retrieve this simply by the electron in the conduction band recombining with the valence band – recombination is a sum of radiative (i.e. emission may be observed) and non-radiative processes. Based on the energy gap law, the fact that rutile energy levels are closer mean that the non-radiative process is more efficient, and hence recombination is more efficient. This is an important observation which we will return to shortly.

Alternative pathways to recombination are possible, and as you can guess, these result in the use of these materials as photocatalysts. The hole has the potential to oxidise water that may be on the surface of the material resulting in the formation of hydoxyl radicals. Hydroxyl radicals are themselves very powerful oxidisers, and can easily oxidise any organic species that happens to be nearby, ultimately to carbon dioxide and water. Meanwhile, upstairs in the conduction band, the electron has no hole to recombine with, since it has oxidised surface bound water. It quickly looks for an alternative to reduce, and rapidly reduces oxygen to form the superoxide anion. This can subsequently react with water to form, again, the hydroxyl radical. The processes are summarized below.

Top: Light of energy exceeding band gap results in charge separation, with electron reducing a donor (usually oxygen) and hole oxidising a donor (usually water); bottom: summary of processes occuring

Top: Light of energy exceeding band gap results in charge separation, with electron reducing a donor (usually oxygen) and hole oxidising a donor (usually water); bottom: summary of processes occuring. Image based on Bahnemann (2004).

At the level of the material’s surface, the requirements for efficient photocatalysis can be deduced from the electronic reactions – there should be surface bound water to allow for efficient oxidation; and the water should be aerated to provide oxygen to the solution. Additionally, the degradation of the pollutant by the catalyst requires for the pollutant to be adsorbed or very close to the surface of the material, and hence the greater the surface area of the material, the more pollutant can adsorb. Nanoparticulate materials are therefore preferred as they vastly increase the surface area (see DSSC post).

Pilkington self-cleaning glass is an example of use of this technology in a commercial application. A thin film of nanoparticulate titanium dioxide is coated onto panes of glass (it is so thin that it is transparent). The glass is in the normal course of events, acquiring dirt. The titanium dioxide on the glass, once exposed to sunlight, produces hydroxyl radicals which degrade any surface adsorbed dirt. Once washed down with rain, this decomposed dirt is removed and the glass is ready for another cycle. The same process is observed for any organic species – they react with the hydroxyl radical to ultimately form carbon dioxide and water.

Given that the materials work readily, it is a good time to detail the limitations. the primary limitation is that the materials absorb only UV light, so the activation by sunlight is completed by the 5% of sunlight that is in the UV region. A large amount of research has looked into ways to enhance the visible light activity of the materials. Another limitation is the fact that recombination is an efficient, competitive process, and given that this is a less efficient process with anatase, it is generally accepted that anatase is a preferred photocatalyst to rutile. Below, we will discuss approaches taken to both increase the visible light absorption capability and increase the efficiency of subsequent reactivity over the recombination process.

Moving to Visible Light Absorption Capability

Given the requirement for UV light activation of TiO2, researchers became interested in tuning the materials so that they would become activated by visible light (e.g. room light) for applications for indoor use or by solar light for outdoor use. Various approaches were considered, and in 2001, a Japanese chemist named Asahi working out of Toyota labs, published a paper in the journal Science on nitrogen doped titanium dioxide materials. Nitrogen doping produced what is commonly called yellow TiO2 (because of, unsurprisingly, its yellow colour!) which showed effective UV and visible light activity. While there is some debate around how the activity is increased, the N-doped TiO2 is shown to have a much greater absorbance in the visible region (extending from a sharp cut off at about 390 nm to a broad cut off at above 500 nm). This subsequently increased the amount of visible light activity the material could absorb, and hence meant that visible light-activated photocatalysis was achievable.

There has been some discussion in the literature on the mechanism on enhancement of nitrogen doping, and the mechanism described here is one put forward by Nakoto (2004) and Irie (2003), and counters Asahi’s original explanation that the N-doping narrowed the gap between the valence band and conduction band of titania. these researchers proposed that the introduction of nitrogen introduced new occupied (i.e. electron rich) orbitals in between the valence band (which are comprised primarily of O-2p orbitals) and conduction band (which are comprised primarily of Ti-3d orbitals). These N-2p orbitals acted as a step up for the electrons in the O-2p orbital, which once populated had now a much smaller jump to make to be promoted into the conduction band.Once this process occurs, electrons from the original valence band can migrate into the mid-band gap energy level, leaving a hole in the valence band, which reacts as described before.

N-doping as explained by Nakoto and Irie. Doping with nitrogen results in a mid-band gap energy level which reduces the energy gap required for charge separation

N-doping as explained by Nakoto and Irie. Doping with nitrogen results in a mid-band gap energy level which reduces the energy gap required for charge separation

Increasing efficiency by incorporation of metal nanoparticles

Given that charge separation requires a great deal of effort, a second theme of research (as well as increasing visible light activity) is to facilitate charge separation. One clever way of doing this is to incorporate noble metal nanoparticles such as silver or gold into the titanium dioxide material. As an example, incorporation of a small amount of silver (1 – 5%) results in increased efficiency in photocatalysis. Silver has a “Fermi level” or electron accepting region at an energy just below the conduction band. Therefore, after light absorption and charge separation, the electron in the conduction band can be effectively trapped by the silver, while the hole oxidises water and forms hydroxyl radicals, without the threat of recombination. Various researchers, including our own work, have shown that there is an optimum amount or “Goldilock’s zone” of silver to add – just enough is needed so that there are silver sites dispersed through the material to rapidly trap electrons, but that too much silver may cover the titanium dioxide and prevent light absorption. In addition, too much silver may mean that the silver acts as a recombination site itself – essentially it will form a bridge between an electron and a hole.

The emission of titanium dioxide (and of similar studies with zinc oxide) can be interpreted as a measure of the recombination efficiency. Studies examining the emission of these metal oxides have demonstrated that the emission intensity reduces on increasing amounts of silver – indicating that the silver is trapping electrons and reducing electron-hole recombination, as indicated in the diagram below.

Incorporation of silver nanoparticles facilitate longer charge separation by trapping photogenerated electrons

Incorporation of silver nanoparticles facilitate longer charge separation by trapping photogenerated electrons


A similar strategy to that described above, an a rapidly evolving area, is the idea of incorporating different semiconductors which have different conduction band energy levels. The strategy is as before, trap the electron so the hole has more time to react. A simple example is the anatase-rutile heterojunction. Rutile has a smaller band gap (by about 0.2 eV) to anatase, although their valence band levels are at similar energies. Therefore, in an analogous fashion to the situation with silver, above, charge separation in anatase, followed by electron injection into the rutile conduction band means that there is a hole in the valence band of anatase that can freely oxidise water. It is no coincidence that the industry standard photocatalyst, Degussa P25, has a 75:25 ratio of anatase:rutile (it also has a very small particle size).


Semiconductor photocatalysis is the utilisation of photogenerated strongly oxidising hydroxyl radicals, which can be applied to a wide range of scenarios, including organic degradation (for pollution remediation) and in organic synthesis. Light induced charge separation, followed by generation of hydroxyl radicals is in the normal course of event reliant on UV light, given the energy gap (band gap) of titanium dioxide. Strategies to enhance the photocatalytic activity include doping to reduce the energy required for charge separation and incorporation of nanoparticles to lengthen the period of charge separation. The size of the materials is also a factor, as for degradation of materials, the pollutant needs to be very near to or adsorbed onto the surface of the semiconductor, and nanoparticulate materials mean that a greater surface area can be exploited.


Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 294, 269 – 271. Asahi’s paper describing his results on N-TiO2. the work shows irradiation by UV-only and visible-only light, showing the enhancement by N-TiO2 with visible light source.

Bahnemann, D., Photocatalytic water treatment: solar energy applications, Solar Energy, 2004, 77, 445–459. Prof Bahnemann is one of Europe’s most active researchers in this field, and this very readable paper shows how the technology can and is used in solar decontamination technology.

Nakamura R, Tanaka T, and Nakato Y., Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys Chem. B., 2004, 108, 10617 – 10620. (See also Irie, H et al, J. Phys Chem. B., 2003, 107, 5483 – 5486). Papers explaining the origin of the hypothesis for the mid-gap energy levels introduced by nitrogen doping.

Seery, M. K., George, R., Floris, P. and Pillai, S. C., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol A: Chemistry, 2007, 189(2-3), 258 – 263 and Georgekutty, R., Seery, M. K. and Pillai, S. C., A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties and Mechanism, J. Phys. Chem. C, 2008, 112(35), 13563 – 13570. these papers detail the incorporation of silver into titanium and zinc oxides respectively, including some consideration of mechanism.

Ruthenium polypyridyl photochemistry

Ruthenium polypyridyl complexes certainly rank amongst the most researched family of compounds in inorganic photochemistry. They are interesting complexes to study, having relatively long (100’s ns) emission lifetimes and a range of applications. It was the oil crisis of the 1970’s that sparked interest in these compounds, as potential hydrogen fuel generators by the photochemical splitting of water, and as seen in other posts, they are currently at the forefront in terms of efficiency in dye-sensitised solar cells. In addition, they have been used as DNA probes and oxygen sensors. The photochemistry of these complexes is discussed below. Readers are recommended to be familiar with the concepts in the “Light Absorption and Fate of the Excited State” article before studying this material.

Like so many aspects of modern photochemistry, Ireland has some key researchers in ruthenium photochemistry and the article below draws from a recent perspective by John Kelly (TCD) and Han Vos (DCU). The fundamentals are discussed here with applications discussed in a forthcoming article.

1. Introduction to Inorganic Photochemistry

We have looked elsewhere at Jablonski diagrams for organic molecules. Inorganic molecules, or more specifically d-block complexes, add an extra layer of molecular orbitals to this Jablonski diagram, between the ground state (HOMO) of the organic compound (which is now the ligand) and the excited state (LUMO). This opens up a range of new transitions, aside from the HOMO-LUMO transition observed in organic chromophores. This latter transition in inorganic photochemistry is called a ligand-field or ligand-ligand transition, as in the excited state the electron is located on the ligand.  As well as this, because of the presence of the metal’s molecular orbitals, three other transitions are available – a d-d transition, where an electron is excited from a metal orbital to an unoccupied metal orbital (this is usually referred to as a metal centred (MC) transition as well as transitions between the metal and the ligand. These can be either an electron excited from the ligand to the metal, called Ligand to Metal Charge Transfer (LMCT) or from the metal to the ligand (MLCT). Because of the energy differences between the various types of transitions, ligand field transitions are usually in the near-UV region (analogous to where we would expect organic molecules to absorb light), charge transfer transitions are in the visible region. The resulting emission from charge-transfer states is often highly coloured.

Light absorption in d-block (octahedral) complexes resulting in from left: metal centred (MC), ligand to metal charge transfer (LMCT), metal to ligand charge transfer (MLCT) and ligand-ligand transition (L-L)

Light absorption in d-block (octahedral) complexes resulting in from left: metal centred transition (MC), ligand to metal charge transfer (LMCT), metal to ligand charge transfer (MLCT) and ligand-ligand transition (L-L)

In order to discuss these transitions in context, we will focus on the, that is, the, inorganic photochemistry complex: Ru(II)(bpy)32+.

2. Fundamentals of ruthenium polypyridyl photochemistry

2.1 Absorption and Emission

Because of the incorporation of metal orbitals, the Jablonski diagram needs to incorporate the notation discussed above. Ruthenium in oxidation state II is d6, and so as an octahedral complex its electrons are in the low-spin t2g6 configuration. Incident light at about 450 nm promotes one of these electrons to a ligand anti-bonding orbital, a metal to ligand charge transfer. (We’ll discuss this, but you might consider how this was established.) Therefore we modify the S0 – S1 notation used in the Jablonski diagrams of organic molecules to one which denotes the type of excited state in inorganic ones – in this case 1MLCT. Transfer to 3MLCT is efficient (heavy atom effect) and so ruthenium complex’s photochemistry generally happens from here. [Remember intersystem crossing is effectively an electron flip, from a situation where electrons are paired to one where they are unpaired.]

Jablonski diagram for ruthenium polypyridyl complexes.

Jablonski diagram for ruthenium polypyridyl complexes. Solid lines and dashed lines are radiative and non-radiative processes respectively.

Absorption (top, source unknown) and emission (bottom, author's results) of Ru(bpy)3 complex in water

Absorption (top, source unknown) and emission (bottom, author's results) spectra of Ru(bpy)3 (2+) complex in water

The absorption and emission data are shown. Ruthenium absorbs at 450 nm (2.8 eV) and emits strongly at ~620 nm (~2.0 eV) in water. This emission is caused by radiative process from the 3MLCT state to the ground state. Emission lifetimes are approximately 200 ns in water in aerated solution and 600 ns in deaerated water. The oxygen in water is a very efficient quencher, and quenches emission with a rate of ~ 109 M-1 s-1. It is possible to map out the various deactivation processes of the excited state to investigate its kinetics:

Deactivation processes of an excited state M* in the presence of a quencher (oxygen)

Deactivation processes of an excited state M* in the presence of a quencher (oxygen)

The quantum yield of emission is therefore affected by how efficient the rate of emission is compared to the rates of deactivation and quenching. This is quantified by the Stern-Volmer relationship (oxygen quenches according to the dynamic quenching model) as discussed in the Quenching section, according to the equation below:

Stern Volmer Equation for Quenching with oxygen as quencher

Stern Volmer Equation for Quenching with oxygen as quencher

The rate constants, in particular the rate constant for deactivation, are dependent on how close the ground and excited states are. The excited state of this complex is a charge-transfer state (charge has moved from one region of the molecule to another), and therefore is very sensitive to solvent polarity – it will be stabilised in more polar solvents. Therefore, changing solvent polarity will affect the energy of the emitting state. It is found that on changing the solvent from water to acetonitrile, the emission lifetime increases from 635 ns to 870 ns, and the quantum yield of emission increases by 50% from 0.o4 to 0.o6. The emission maximum increases in energy from 627 nm to 615 nm.

These results can be explained as follows: on decreasing polarity of the solvent, the emitting state is destabilised by about 12 nm. This increase in energy difference between ground and excited state means that there is poorer overlap of the vibrational levels of the ground and excited state, so the deactivation process is not as efficient. Therefore the deactivation rate constant term is lower in the expression for the emission quantum yield in the presence of quencher, above, indicating a larger emission quantum yield. All of this is based on the assumption that the radiative rate constant remains unchanged, which is found to be true in practice. This observation is generally summarised as the Energy Gap Law – the larger the gap between ground and excited state, the less efficient deactivation processes are.

2.2 Nature of the Excited State

Absorption and emission spectra give initial information on the excited state, and are the photochemist’s initial tools to probe the excited state chemistry of molecules. To delve further, flash photolysis/transient spectroscopy give more detailed information. Flash photolysis, as mentioned elsewhere on this site, allows us to study the excited state by obtaining its lifetime and absorption spectrum. An experimental set-up is outlined below (more details onthe general details of flash photolysis in the Experimental article on Flash Photolysis). Excitation using, for example a Nd:YAG laser at 355 nm, generates the excited state which quickly equilibrates to the 3MLCT state. At this stage, a Xe or Hg/Xe obtains an absorption spectrum of the excited state. This was traditionally acquired point by point (i.e. measuring the change in absorption at 400, then 410, then 420 nm, etc) but iCCD (intensified charge coupled device) detectors are now the norm – these acquire information across a broad spectral range (~600 nm) at once. As well as providing structural information on the nature of the excited state by generating its absorption spectrum, flash photolysis also allows for the lifetime of this state to be measured, by acquiring a spectrum at intervals after the laser flash, therefore monitoring the decay of the excited state.

Schematic of Transient Absorption Spectroscopy Experiment: Laser excites sample and change in absorption is monitored by a xenon lamp. The simulated transient spectrum (top right) is the difference in absorption after laser flash, showing negative (dissapearance of ground state) and positive (formation of transients) absorbances. The absorption spectrum is shown on the bottom for comparison. Inset shows a kinetic trace of any of the transient peaks from which lifetime information can be gleaned.

Schematic of Transient Absorption Spectroscopy Experiment: Laser excites sample and change in absorption is monitored by a xenon lamp. The simulated transient spectrum (top right) is the difference in absorption after laser flash, showing negative (disapearance of ground state) and positive (formation of transients) absorbances. The absorption spectrum is shown on the bottom for comparison. Inset shows a kinetic trace of any of the transient peaks from which lifetime information can be gleaned.

The transient spectrum is shown with the accompanying ground state absorption spectrum. In the transient spectrum, it can be seen that some peaks have negative changes in absorbance whereas others have positive changes. The negative changes in absorbance (“bleaching”) occur where the molecule shows absorbance bands in the ground state. Hence, with a transient spectrum, the lash flash results in the formation of the excited state, and the xenon lamp records the loss of ground state chromophores – any absorbance that was present because of these chromophores is now registered as negative changes in absorbance in the transient spectrum. On formation of excited/transient state, new chromophores are present, which are monitored by the xenon lamp, and hence appear as positive changes in absorption (remember ground and excited states are chemically different species). To generate a true transient spectrum, the differences in absorption is subtracted from the absorption spectrum, although this is rarely necessary. The decay curve, in the inset is the rate of decay of one of the peaks – e.g. the transient peak at 390 nm. Fitting this curve to an exponential function allows for the rate constant (and hence lifetime) of the transient state to be easily determined. For example, if the decay was found to be mono-exponential, the curve of intensity (I) versus time (t) would be fitted to the expressionand allow for calculation of k.


The above experiment discusses results from a nanosecond experiment, but if we were to push faster, into the picosecond and femtosecond domain, the processes of intersystem crossing and relaxation in the triplet state would be observed. These kind of experiments are how information such as charge injection rates  in dye-sensitized solar cells can be determined.

The extent of positive absorbances in transient spectroscopy provide information on the nature of the transient species or excited state. Like conventional UV/vis spectroscopy, broad featureless bands very often don’t provide much direct information. However, considering the various types of transitions available, why is the excited state assigned as a MLCT state? This state, as indicated above, results in an extra electron residing on the bipyridyl (bpy) ligand, after an electron was transferred from the metal to it. Therefore, the transient spectrum should show characteristics of this bpy radical (called “bpy dot minus”). How can this be done? Well with the assistance of our electrochemical friends, we can electrochemically generate the bpy radical, and obtain its UV/vis spectrum (this technique is called spectroelectrochemistry). If it has characteristics similar to those in the transient spectrum (which in this case it does, the band at 368 nm), we can conclude that they must be attributed to the same chromophore.

3. Conclusion

In this first of two articles, we have looked at basic photophysical properties of a ruthenium complex and examined how absorption, emission and transient spectroscopic studies provide information on their excited state. In the second article, we will look at how these properties are used in a variety of applications.

4. References and Further Reading

Photochemistry of polypyridine and porphyrin complexes, K. Kalyanasundaram, Academic, London: 2002. Very comprehensive book on the area with excellent introduction covering theory in much more detail than above.

Vos, J. G. and Kelly, J. M., Ruthenium polypyridyl chemistry: from basic research to applications and back again, Dalton. Trans., 2006, 4869 – 4883. Good ooverview of the synthesis of these complexes and their variety of applications, especially looking at the role of Irish researchers in the area