Photodynamic Therapy: An overview

The use of light in medical treatment is nothing new. In the ancient world, roots of the plant Dorstenia were applied topically on to irritated skin which would clear following a few hours of sunshine. The active ingredient, psoralen, is now the basis of PUVA (psoralen + UVA) therapy used to treat the effects of psoriasis and other skin ailments. Psoralen acts by intercalating between base pairs of DNA and upon UV irradiation, the two double bonds form [2+2] cyclo-adducts with thymine, kinking and destroying the DNA of the replicating cells, which was causing the skin irritations in the first place.

In the early twentieth century, following significant progess in synthetic chemistry of coloured dyes throughout the nineteenth century, two German scientists completed work on the toxic effect of eoisin, a methylene based dye. The effect was only noted with the presence of light, and at a later date the presence of oxygen. Thus the modern day science of photodynamic therapy (PDT) was discovered, consisting of three components: photosensitising dye, light, and oxygen. Despite positive results from trials, the work went relatively unnoticed, and it wasn’t until the 1970s that it really picked up again.

Fundamentals

The basic principles of PDT are relatively easy to consider. A light absorbing dye is applied or injected into the patient and after a time appropriate for maximum uptake into tumour, the affected area is irradiated with light. The dye absorbs the incident light and an electronically excited state is formed. This subsequently generates a reactive oxygen species (ROS) which destroys the tumour. The concept is beautifully simple, and as the dye is non-toxic in the absence of light, does not carry the negative effect of traditional chemotherapies which are much less discriminate in their action. In PDT, only irradiated areas of body tissue will generate activity leading to cell destruction. As mentioned, there are three components to PDT: light, photosensitiser and oxygen. the latter two are considered in turn, below.

Oxygen

The net result of dye irradiation is the generation of reactive oxygen species, and it is generally considered that singlet oxygen 1O2 is the ROS responsible for cell destruction in PDT. 1O2 is formed when oxygen, which in the ground state exists in as a triplet (3O2 ) absorbs energy. According to the MO diagram of the ground state 3O2 shown, the singlet is formed with the pairing of electrons in the LUMO. This is energetically unstable relative to the ground state, as there is a vacant orbital of the same energy available to the paired electron. Hence, 1O2 is energetically higher (thus more reactive) and will return to its triplet ground state. The lifetime of the singlet state in a cell is of the order of 100s of ns, and it has been estimated that it can diffuse less than 50 nm in this time. Therefore, in cells of the order of microns, the action is limited to cellular dimensions.

1O2 is formed by energy transfer from the photoexcited dye. But an alternative is possible. If the photoexcited dye transfers an electron to molecular oxygen, a superoxide anion is formed. Therefore, a crucial aspect of drug development in PDT is the nature of the ROS formed. Electron transfer forming superoxide anion is called a Type I reaction. Energy transfer forming 1O2 is called a Type II reaction. We can distinguish between these by understanding the chemistry behind them. Importantly for us here. Type II is detected because as singlet oxygen returns to its triplet ground state, it emits a small amount of infrared phosphorescence, which can be detected (see figure – the emission maximum is approximately 1270 nm). Type I on the other hand, can be detected by monitoring the redox chemistry of Fe3+ and subsequent formation of hydroxyl radicals (the photo-Fenton mechanism).

Singlet oxygen emission

Photosensitiser

The photosensitiser has several functions. It must locate in the tumour. This involves considering both hydrophilic and lipophilic components in the molecular design that are not covered here. It should also absorb in the far visible region (600 – 800 and preferably 700 – 800 nm). Haemoglobin is a significant component of body tissue, and absorbs strongly in the mid visible region (580 nm). This is obvious when we shine a light through our hand – only red light passes through. Therefore the ideal will be one which absorbs light where the body does not, allowing them to be used deep within body tissue (e.g. liver, pancreas).

As it stands, clinically approved PDT drugs are not yet optimised for longer wavelength light absorption, and hence PDT treatment is currently limited to areas that are easy to expose to a light source: skin, lung, oesophagus, etc. This issue of “penetration depth” was the subject of a recent court case, whereby a doctor justifiably claimed that PDT treatment would not be suitable for treatments such as liver cancer, as the liver was just too big for light to pass through. (The doctor was subsequently acquitted of all charges). The bar chart (Ref 1) shows how photosensitiser absorption capacity affects penetration depth, and this is the focus of current research (below). Penetration doubles once light at longer wavelength than the absorption of haemoglobin is achieved (630 nm) and doubles again at 700 nm. An ideal photosensitiser will therefore absorb between 700 – 800 nm.

Other factors for an ideal photosensitiser include: low toxicity in the absence of light and little post-treatment side affects. One of the most significant side effects is post-treatment light sensitivity, whereby patients have to avoid light for fear that healthy body tissue which have residual amount of photosensitiser present will generate unwanted activity.

Jablonski Diagram for generation of singlet oxygen (ref 1)

From a photochemical point of view, one of the most important dye characteristics is that it will form a high concentration of triplet excited state. Since the mechanism of action is generation of singlet oxygen, a singlet state may not be long-lived enough to allow time for reaction with oxygen (singlet-singlet deactivation via fluorscence or non-radiative means is an allowed process, and therefore very fast). If the triplet forms via intersystem crossing, its deactivation is forbidden, and hence slower, allowing the energy transfer to oxygen to be more competitive. This again provides potential for future research (see below).

Photofrin

Photofrin (R)

The first clinically approved PDT drug was photofrin (R). Photofrin is a porphyrin -based compound and you may wish to examine its structure to identify hydrophilic and lipophilic components alluded to above. It absorbs at 630 nm, which is within the PDT window and has a respectable quantum yield of inter-system crossing of about 25%. However, its absorption is not significant, with a low extinction coefficient. Its worth noting here also that PDT is not limited to cancer based therapy, it has also been used as alternative to antibiotics and for gum disease (There is a good overview article in Chemistry World, ref 2, and some nice pictures for dental treatment at the Periowave site, ref 3)

Current Developments

Absorption spectra of chlorins and bacteriochlorins (Ref 1)

Photofrin’s limitation is primarily its light absorption. To get to a point where PDT can become more versatile, the photosensitiser needs first to absorb in the 700 – 800 nm window (and then subsequently satisfy all other demands re singlet oxygen generation, accumulation in tumours….). Reduction of one (chlorins) and two (bacteriochlorins) of the four pyrroles in porphyrin based compounds have been found to shift the wavelength of absorption to longer wavelengths. In the example shown, the absorption shifts to about 700 nm for chlorin-based molecules and to about 800 nm for bacteriochlorin based molecules. The compound shown has a high extinction coefficient of absorption and good oxygen generation capabilities. More information on these compounds is available in Ref 1.

Intersystem crossing can be enhanced by the heavy atom effect, and this is the subject of another class of boron-based compounds. It was noted for certain sites of substitution of iodine, the singlet oxygen generation capacity increased, attributed to an increased intersystem crossing yield caused by the iodine heavy atoms. More information on these compounds is available in reference 4.

Utilising heavy atom effect to enhance ISC (Ref 4)

Summary

PDT provides huge potential in treatment of cancerous tumours and a range of other antibiotic treatments. It has been called a very selective surgeon’s knife thanks to its ability to isolate the affected area for treatment with little collateral damage. At the core of future developments of PDT is an understanding of the photochemistry at its heart, and now a century after the first PDT action was discovered, it looks like it has a positive future.

References

1. (Primary reference for this article) Chem Soc Rev, 2011, 40, 340: Sections A, B, C.1, C.4, D, F.2, F.3

2. Chemistry World, 2012, April, 52, see also Education in Chemistry, 2004, May, 71.

3. Periowave blog (accessed December 2012)

3. Chem Soc Rev, 2013, 42, 77: pages 77 – 81.

Metal Oxide Photocatalysis

Metal oxide photocatalysis is based on the use of metal oxides (for example titanium dioxide) as light-activated catalysts in the destruction of organic and inorganic materials and in organic chemistry synthesis. In this article, we will be looking at the use of thee types of materials in the degradation of organic matter, which has applicability in environmental remediation (aqueous and air-borne) and self-cleaning surfaces. The technique is already widely used in commercial applications, but is still hampered by one significant limitation. These materials generally absorb primarily ultra-violet light, and research in recent years has been concentrating on developing visible-light active materials, with an emphasis on nano-particulate materials to maximize surface area. This article discusses the background to metal oxide photocatalysis, using titanium dioxide as the exemplar material, and looks at strategies being researched to enhance the photocatalytic efficiency.

Introduction

Titanium dioxide is a white powder, with titanium in oxidation state IV. Its d-electron configuration is therefore d0, and the white colour is explained by the lack of d-d or metal centred transitions. It exists in several polymorphs – two of interest here: anatase and rutile. As it is a semiconductor, its HOMO is termed a valence band and LUMO is termed a conduction band. Light absorption effectively results in a ligand to metal charge transfer, electrons from oxygen are transferred to the vacant titanium d-orbitals. For anatase (3.2 eV) and rutile (3.0 eV), this transition is in the UVA region, resulting in a sharp absorption band at 390 – 400 nm.

Looking more closely at the electronic processes, promotion of an electron to the conduction band, on irradiation by UV light, results in a ‘hole’ in the valence band – essentially a detriment of the electron density that was localised on that orbital, and usually assigned a positive charge to symbolize the loss of negative electron (of course negative and positive are just arbitrary notations). The hole is powerfully oxidizing – the orbital very much wants to retrieve electron density just lost after light irradiation. It can retrieve this simply by the electron in the conduction band recombining with the valence band – recombination is a sum of radiative (i.e. emission may be observed) and non-radiative processes. Based on the energy gap law, the fact that rutile energy levels are closer mean that the non-radiative process is more efficient, and hence recombination is more efficient. This is an important observation which we will return to shortly.

Alternative pathways to recombination are possible, and as you can guess, these result in the use of these materials as photocatalysts. The hole has the potential to oxidise water that may be on the surface of the material resulting in the formation of hydoxyl radicals. Hydroxyl radicals are themselves very powerful oxidisers, and can easily oxidise any organic species that happens to be nearby, ultimately to carbon dioxide and water. Meanwhile, upstairs in the conduction band, the electron has no hole to recombine with, since it has oxidised surface bound water. It quickly looks for an alternative to reduce, and rapidly reduces oxygen to form the superoxide anion. This can subsequently react with water to form, again, the hydroxyl radical. The processes are summarized below.

Top: Light of energy exceeding band gap results in charge separation, with electron reducing a donor (usually oxygen) and hole oxidising a donor (usually water); bottom: summary of processes occuring

Top: Light of energy exceeding band gap results in charge separation, with electron reducing a donor (usually oxygen) and hole oxidising a donor (usually water); bottom: summary of processes occuring. Image based on Bahnemann (2004).

At the level of the material’s surface, the requirements for efficient photocatalysis can be deduced from the electronic reactions – there should be surface bound water to allow for efficient oxidation; and the water should be aerated to provide oxygen to the solution. Additionally, the degradation of the pollutant by the catalyst requires for the pollutant to be adsorbed or very close to the surface of the material, and hence the greater the surface area of the material, the more pollutant can adsorb. Nanoparticulate materials are therefore preferred as they vastly increase the surface area (see DSSC post).

Pilkington self-cleaning glass is an example of use of this technology in a commercial application. A thin film of nanoparticulate titanium dioxide is coated onto panes of glass (it is so thin that it is transparent). The glass is in the normal course of events, acquiring dirt. The titanium dioxide on the glass, once exposed to sunlight, produces hydroxyl radicals which degrade any surface adsorbed dirt. Once washed down with rain, this decomposed dirt is removed and the glass is ready for another cycle. The same process is observed for any organic species – they react with the hydroxyl radical to ultimately form carbon dioxide and water.

Given that the materials work readily, it is a good time to detail the limitations. the primary limitation is that the materials absorb only UV light, so the activation by sunlight is completed by the 5% of sunlight that is in the UV region. A large amount of research has looked into ways to enhance the visible light activity of the materials. Another limitation is the fact that recombination is an efficient, competitive process, and given that this is a less efficient process with anatase, it is generally accepted that anatase is a preferred photocatalyst to rutile. Below, we will discuss approaches taken to both increase the visible light absorption capability and increase the efficiency of subsequent reactivity over the recombination process.

Moving to Visible Light Absorption Capability

Given the requirement for UV light activation of TiO2, researchers became interested in tuning the materials so that they would become activated by visible light (e.g. room light) for applications for indoor use or by solar light for outdoor use. Various approaches were considered, and in 2001, a Japanese chemist named Asahi working out of Toyota labs, published a paper in the journal Science on nitrogen doped titanium dioxide materials. Nitrogen doping produced what is commonly called yellow TiO2 (because of, unsurprisingly, its yellow colour!) which showed effective UV and visible light activity. While there is some debate around how the activity is increased, the N-doped TiO2 is shown to have a much greater absorbance in the visible region (extending from a sharp cut off at about 390 nm to a broad cut off at above 500 nm). This subsequently increased the amount of visible light activity the material could absorb, and hence meant that visible light-activated photocatalysis was achievable.

There has been some discussion in the literature on the mechanism on enhancement of nitrogen doping, and the mechanism described here is one put forward by Nakoto (2004) and Irie (2003), and counters Asahi’s original explanation that the N-doping narrowed the gap between the valence band and conduction band of titania. these researchers proposed that the introduction of nitrogen introduced new occupied (i.e. electron rich) orbitals in between the valence band (which are comprised primarily of O-2p orbitals) and conduction band (which are comprised primarily of Ti-3d orbitals). These N-2p orbitals acted as a step up for the electrons in the O-2p orbital, which once populated had now a much smaller jump to make to be promoted into the conduction band.Once this process occurs, electrons from the original valence band can migrate into the mid-band gap energy level, leaving a hole in the valence band, which reacts as described before.

N-doping as explained by Nakoto and Irie. Doping with nitrogen results in a mid-band gap energy level which reduces the energy gap required for charge separation

N-doping as explained by Nakoto and Irie. Doping with nitrogen results in a mid-band gap energy level which reduces the energy gap required for charge separation

Increasing efficiency by incorporation of metal nanoparticles

Given that charge separation requires a great deal of effort, a second theme of research (as well as increasing visible light activity) is to facilitate charge separation. One clever way of doing this is to incorporate noble metal nanoparticles such as silver or gold into the titanium dioxide material. As an example, incorporation of a small amount of silver (1 – 5%) results in increased efficiency in photocatalysis. Silver has a “Fermi level” or electron accepting region at an energy just below the conduction band. Therefore, after light absorption and charge separation, the electron in the conduction band can be effectively trapped by the silver, while the hole oxidises water and forms hydroxyl radicals, without the threat of recombination. Various researchers, including our own work, have shown that there is an optimum amount or “Goldilock’s zone” of silver to add – just enough is needed so that there are silver sites dispersed through the material to rapidly trap electrons, but that too much silver may cover the titanium dioxide and prevent light absorption. In addition, too much silver may mean that the silver acts as a recombination site itself – essentially it will form a bridge between an electron and a hole.

The emission of titanium dioxide (and of similar studies with zinc oxide) can be interpreted as a measure of the recombination efficiency. Studies examining the emission of these metal oxides have demonstrated that the emission intensity reduces on increasing amounts of silver – indicating that the silver is trapping electrons and reducing electron-hole recombination, as indicated in the diagram below.

Incorporation of silver nanoparticles facilitate longer charge separation by trapping photogenerated electrons

Incorporation of silver nanoparticles facilitate longer charge separation by trapping photogenerated electrons

Heterojunctions

A similar strategy to that described above, an a rapidly evolving area, is the idea of incorporating different semiconductors which have different conduction band energy levels. The strategy is as before, trap the electron so the hole has more time to react. A simple example is the anatase-rutile heterojunction. Rutile has a smaller band gap (by about 0.2 eV) to anatase, although their valence band levels are at similar energies. Therefore, in an analogous fashion to the situation with silver, above, charge separation in anatase, followed by electron injection into the rutile conduction band means that there is a hole in the valence band of anatase that can freely oxidise water. It is no coincidence that the industry standard photocatalyst, Degussa P25, has a 75:25 ratio of anatase:rutile (it also has a very small particle size).

Summary

Semiconductor photocatalysis is the utilisation of photogenerated strongly oxidising hydroxyl radicals, which can be applied to a wide range of scenarios, including organic degradation (for pollution remediation) and in organic synthesis. Light induced charge separation, followed by generation of hydroxyl radicals is in the normal course of event reliant on UV light, given the energy gap (band gap) of titanium dioxide. Strategies to enhance the photocatalytic activity include doping to reduce the energy required for charge separation and incorporation of nanoparticles to lengthen the period of charge separation. The size of the materials is also a factor, as for degradation of materials, the pollutant needs to be very near to or adsorbed onto the surface of the semiconductor, and nanoparticulate materials mean that a greater surface area can be exploited.

References

Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 294, 269 – 271. Asahi’s paper describing his results on N-TiO2. the work shows irradiation by UV-only and visible-only light, showing the enhancement by N-TiO2 with visible light source.

Bahnemann, D., Photocatalytic water treatment: solar energy applications, Solar Energy, 2004, 77, 445–459. Prof Bahnemann is one of Europe’s most active researchers in this field, and this very readable paper shows how the technology can and is used in solar decontamination technology.

Nakamura R, Tanaka T, and Nakato Y., Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys Chem. B., 2004, 108, 10617 – 10620. (See also Irie, H et al, J. Phys Chem. B., 2003, 107, 5483 – 5486). Papers explaining the origin of the hypothesis for the mid-gap energy levels introduced by nitrogen doping.

Seery, M. K., George, R., Floris, P. and Pillai, S. C., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol A: Chemistry, 2007, 189(2-3), 258 – 263 and Georgekutty, R., Seery, M. K. and Pillai, S. C., A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties and Mechanism, J. Phys. Chem. C, 2008, 112(35), 13563 – 13570. these papers detail the incorporation of silver into titanium and zinc oxides respectively, including some consideration of mechanism.

Origins of Flash Photolysis: George Porter

Flash photolysis revolutionised the science of photochemistry by allowing for rapid (and the definition of that term was era-dependent) monitoring of photochemical intermediates. Since its development in the mid-20th century, flash photolysis has been at the centre of studies of photochemical/physical processes. Developed by Porter, working with Norrish at Cambridge, at the microsecond timescale, the instrumentation has now evolved to the femtosecond timescale – nine orders of magnitude faster over four decades. Porter said in 1975 that he anticipated femtosecond spectroscopy within five years, and it was primarily instrumental issues which delayed his vision. His foresight was eventually realised with the work of Egyptian photophysicist Ahmed Zewail, working at Caltech. This first in a sequence of articles covers the historical development of flash photolysis, we will look in future posts at the progress leading up to Zewail’s development of femtosecond spectroscopy as well as outlining how it is used experimentally to study photochemical intermediates.

1. Development of Early Instrumentation

When Ronald Norrish, Goerge Porter and Manfred Eigen were awarded the Nobel Prize in 1967, for studies of extremely fast chemical reactions, effected by disturbing the equilibrium by means of very short impulses of energy, it was an acknowledgement of their pioneering work in developing apparatus to study microsecond chemical reactions in the microsecond timescale. Eigen’s work inolved using sound waves (a form of pressure) to perturb (or distort) systems, subtly, and Porter, working as a student of Norrish’s at Cambridge, used UV flashes to perturb systems creating electronically excited states. Prior to this development, “fast” reaction kinetics were capable of being studied only on the sub-second time-scale using stopped-flow apparatus, which was developed in the 1920’s. The concept was simple in principle – distort the system at equilibrium using a high-energy flash of light and detect how fast the system restores to equilibrium. The difference here from previous approaches to kinetic analysis was that studies, for example in stopped flow, examined how fast systems approached equilibrium on mixing, and hence were limited by how fast mixing could be effected.

Porter has said that his work for the navy during World War II, as a radar scientist using pulses of electromagnetic radiation was the seed for his ideas at Cambridge when he went to work as Norrish’s graduate student after the war in 1945. Having been sent to get a replacement lamp for a torch for experiments he was conducting to study the CH2 radical (the torch was acting as a continuous light source), Porter saw flash-lamps being manufactured at the Siemen’s factory in Preston, UK and in 1947, introduced the idea of using flash lamps as a pulse of energy to “study transient phenomenon”. The second flash (the true genius of the development), after the burst of light creating the transient state, would essentially photograph the transient phenomenon – so the time scale of the flash was crucial. At the time, millisecond measurement was considered “far beyond direct physical measurement”. Flash photolysis would allow liftetimes 1000 times shorter to be measured by 1950.

The flash lamp used by Porter was a high-intensity pulsed lamp used by the Royal Navy at the time for night-time aerial photography. It was contained in a 1 m long quartz tube (2000 μF charged to 4 kV for those interested in electronics). It could be discharged in 2 ms. The probe flash – a less intense light source which would measure the changes in absorption after the initial flash was 50 microseconds, and both the initial flash (pump) and probe were timed using a timing wheel, which can be seen in the photograph of the original apparatus (to the right of the apparatus) below.

Left: Lord George Porter. Image generously donated by Lady Porter, (c) Lady Porter; used with permission. Right: The first flash photolysis apparatus. From Thrush, Photochem. Photobiol. Sci., 2003, 2, 453–454 - used by permission of the Royal Society of Chemistry - see link below)

Left: Lord George Porter at the time of the development of flash photolysis. Image generously donated by Lady Porter, (c) Lady Porter; used with permission. Right: The first flash photolysis apparatus. From Thrush, Photochem. Photobiol. Sci., 2003, 2, 453–454 - used by permission of the Royal Society of Chemistry - see link below)

2. Early Experiments

Interestingly, the first experiments the apparatus was used in have direct relevance to modern science – the study of hydroxyl radicals in hydrogen-oxygen-nitrogen dioxide systems and in the study of the ClO radical in chlorine-nitrogen-oxygen systems. These species and intermediates generated are at the heart of stratospheric chemistry research today. Early transient absorption spectroscopy experiments (see Windsor article in same issue, referenced below) were on triplet-triplet absorption in polyaromatic hydrocarbons (PAHs), again environmentally relevant species today. These studies looked at the kinetics of decay of the triplet state, in the microsecond timescale, and how they were affected by solvent viscosity, presence of oxygen, etc. These studies formed the backbone of a wide and ever-growing research into organic compounds (including my own on enone-alkene cycloadditions some 40 years later!).

Review

It’s difficult for us now to comprehend the true genius exhibited by Porter in his development of flash photolysis. I think it demonstrates magnificent scientific flair, taking together his previous experience, observance of available instruments parts and an obviously great understanding of chemistry, and combining to develop flash photolysis. The development of the technique revolutionised the fields of kinetics and photochemistry, with implications across a huge variety of fields, including, as we have seen above, stratospheric chemistry and organic photochemistry. Porter has sown the seeds for fast very fast and ultimately ultrafast reaction kinetics, which essentially required faster and faster laser pulses to achieve. By the late 1960’s, nanosecond spectroscopy was feasible.

In the next article on this topic, which will be linked here, we will look at Zewail’s work in developing femtosecond spectroscopy.

References

This article is sourced from various articles, as indicated below:

Van Houten, J. A Century of Chemical Dynamics Traced through the Nobel Prizes: 1967: Eigen, Norrish, and Porter, J. Chem. Educ., 2002, 79(5), 548 – 550. Overview of the development of Flash Photolysis in the context of Nobel Prizes in kinetics generally.

Thrush, B. A., The Genesis of Flash Photolysis, Photochem. Photobiol. Sci., 2003, 2, 453 – 454. Short article on the experimental details, as part of a special issue on George Porter’s work and influence in the area. The journal issue generally shows the scope of flash photolysis in photochemistry research today.

Farago, P., Interview with Sir George Porter, J. Chem. Educ., 1975, 52(11), 703 – 705. Great interview with Porter – what comes across so well is his keen interest in science and in promotion of good science communication. Well worth a  read.

Windsor, M. W., Flash photolysis and triplet states and free radicals in solution, Photochem. Photobiol. Sci., 2003, 2, 455 – 458. Wonderful personal account of Porter’s first student (as I can gather) and his work on the development of triplet-triplet absorption spectroscopy.

Light Absorption and Fate of Excited State

Photochemistry is the study of what happens to molecules when they absorb light. Therefore it is important to consider the factors affecting whether and how efficiently molecules absorb. In addition, in the very short time-frame after a molecule has absorbed light, it can undergo a variety of processes. In applications, we may desire a particular process, so again an understanding of what pathways are available to excited states is important so that systems can be optimised as required (e.g. by changing solvent, modifying the molecule).

Students should note that this topic is traditionally approached from a quantum chemical background. All textbooks on photochemistry cover this well (for example see Turro or Gilbert and Baggott) so it is not necessary to relay it in too much detail here. Instead, a qualitative overview is presented for the purposes of providing a background to the material elsewhere on this site.

1. Light Absorption – Formation of the Excited State

Photochemistry is based on the reaction/reactivity of molecules in their excited state after they have absorbed light. By “light”, we mean that part of the electromagnetic spectrum that can promote electrons in the outer atomic orbitals to unoccupied orbitals – i.e. electrons near or at the highest occupied molecular orbital (HOMO) to orbitals near or including the lowest unoccupied molecular orbital (LUMO). To do this, the light must be of sufficient energy to promote electrons between electronic energy levels, and this is found to be light in the UV/visible region of the electromagnetic spectrum. For this reason, the region of the spectrum 200 nm < λ < 800 nm is sometimes referred to as the “photochemical window”. The range of wavelengths in the spectrum and the result of absorption by the atom/molecule is shown below.

Regions of the electromagnetic spectrum and their impact on atom structure

Regions of the electromagnetic spectrum and their impact on atom structure

Therefore, absorption of a photon of light of wavelength 200 – 800 nm may result in a HOMO-LUMO transition (dependent on other factors which we will discuss later). A very clear indication of this is observed in d-block complexes. For example, a ruthenium (II) complex has six d-electrons and has a low spin octahedral configuration t2g6. On absorption of visible light (λ ~450 nm), an electron is promoted to an eg orbital, giving the complex its red-orange colour. This transition is in the visible region. For d0 complexes such as TiO2, a d-d transition is not possible, and a transition from the oxide ligand to the metal centre – a ligand – to metal charge transfer (LMCT) transition occurs, but only if the molecule is irradiated by UV light (λ < 390 nm). Hence TiO2 is white, as it does not absorb any visible light.

Absorption of a photon of visible light causes a d-d transition in Ru(II) giving the molecule a visible colour

Absorption of a photon of visible light causes a d-d transition in Ru(II) giving the molecule a visible colour

As well as the type of transitions possible, a second factor to consider is the intensity of absorption as a function of wavelength. These absorptions, measured by UV/visible absorption spectroscopy for gases or solutions and diffuse reflectance spectroscopy (DRS) for solids will vary depending on the extinction coefficient, ε, of the molecule at that wavelength. The extinction coefficient is a measure of the probability of an electronic transition from ground to excited state, at a given wavelength. This probability is calculated via quantum chemical parameters that are beyond the scope of this course. However, in simple terms, the value of ε gives an indication of how “allowed” a transition is, where “allowed” is a meant strictly as a quantum chemical term. If ε is measured to be greater than 105 dm3 mol-1 cm-1, then the transition is “fully allowed” – all quantum chemical rules are passed. For transitions below ~100 [dm3 mol-1 cm-1 ,units implied from hereon], the transition is “forbidden”, indicating that all quantum rules are not passed, and the probability of transition is very low – i.e. the molecule does not absorb well at this wavelength.

The in-between grey area, for ε values between ~102 and ~104, are where the transitions are “partially allowed”. The quantum mechanical rules are based primarily on two components – spin and symmetry. The spin component says that if a transition involves a change of spin (e.g. singlet to triplet) then the transition is forbidden. The symmetry component examines the symmetry of the ground and excited state, and depending on these symmetries the transition will be allowed or forbidden. But these symmetry calculations are based on a molecule idealised conditions, so the symmetry of the real molecule may be distorted by the presence of solvent or of a heavy atom on the molecule (the so-called “heavy atom effect” – we will return to later). Hence if a transition is spin-forbidden, symmetry allowed, then the probability is very low, and ε will be <100. But if it is spin-allowed, symmetry forbidden, then appreciable absorption may be observed (102 – 104) because of the symmetry distortions mentioned above.

The final factor to consider about light absorption, having discussed types of transition and intensity of absorption above is the shape of absorption spectra. Again, these relate to the discussions above on the value of ε at each wavelength, but for an individual electronic transition (e.g. HOMO – LUMO), transitions between vibrational levels of each orbital may be more intense than others. These transitions are governed by the Franck-Condon Principle, which states that:

the electronic transition in a molecule takes place so rapidly compared to nuclear motion, that immediately afterwards the nuclei have still very much the same nuclear geometry (position and velocity) as before the transition.

In simple terms, this means that electronic transitions take place so quickly the nuclear geometry differences between ground and excited states do not have time to adjust, or in even simpler terms, these transitions are vertical. Consider the potential energy diagram for a HOMO and LUMO shown below. Each electronic orbital has some of its vibrational levels shown. The probability of an electron being in one of these orbitals can be calculated, and are “mapped” using wavefunctions, as shown.

Looking at these qualitatively, we can say that the most probable transition between a vibrational level in the ground state (HOMO) and one in the excited state (LUMO) will be the one where the wavefunctions overlap the most in the vertical line above the ground state groud vibrational level. (in either a positive or negative direction). On the left hand side of the diagram, the greatest overlap is (hypothetically) the ground state vibrational level 1 and the excited state vibrational level 1, so we have a 0 – 1 transition (spectroscopists will get annoyed at this notation, but it is used here just to illustrate the principle). On the right hand side, the excited state geometry is different to the ground state (the potential energy diagram is shifted to the right a little), so in this case the hypothetical best overlap is between 0 in the ground state and 4 in the excited state. Tehrefore the shapes of the two absorption spectra in each of these scenarios is different. Of course, in practice we don’t see this fine structure, the absorption spectra are essentially a line drawn over the tops of the individual transition peaks, resulting in the broad, generally featureless absorption spectra we are used to. But if we were to do it in the gas phase (eg iodine vapour experiment) we would see this fine structure. If you’re wondering, the reason we don’t see fine structure in solution is because the molecules absorbing light are being battered around by solvent molecules, so the energy levels are constantly moving up and down a little, therefore blurring the transitions a little. Each electronic transition will have a suite of different vibrational transitions, so a molecule with, for example, three bands in the experimental absorption spectrum consists three of these processes happening. Because electronic transitions also vary in intensity, some of the bands may be more intense than others.

Ground and excited state potential energy curves with vibrational energy level wavefunctions shown. Left: The most probable transition is the 0 - 1 transition; Right: the different nuclear configuration of the excited state means that in this case, 0 - 4 transition is most intense. Curves over the PE diagrams show the resulting absorption spectra (Based on images presented in Gilbert and Baggott, which covers this area excellently)

Ground and excited state potential energy curves with vibrational energy level wavefunctions shown. Left: The most probable transition is the 0 - 1 transition; Right: the different nuclear configuration of the excited state means that in this case, 0 - 4 transition is most intense. Curves over the PE diagrams show the resulting absorption spectra (Based on images presented in Gilbert and Baggott, which covers this area excellently)

2. The Excited State

If a molecule absorbs light and forms an excited state, then it is in a very different state to one it was in the previous few sub-picoseconds. Excited states have been called “electronic isomers”, which rather underestimates their relevance. To emphasise the point, excited states are chemically different species to their corresponding ground states. This statement reflects the true beauty and power of photochemistry. For every photoactive molecule a second different molecule can be “created” by literally, the flick of a switch – this gives an inkling of the true potential of photochemistry as a discipline. Very often, these states are not accessible by thermal means because of the great differences in energy levels.

Excited states are energetically unstable and very short-lived. “Short” in this context means from sub-nano and nanosecond (if a process is allowed) to milliseconds and seconds, if a process is forbidden, such as phosphorescence. To put these numbers in context, the German photochemist and educator Michael Tausch has pointed out that the positive equivalent of a nanosecond (10-9 s), which is 10+9 s (or 1 gigasecond), is about the equivalent of a human lifetime.

Therefore the equipment and scientists which experimentally determine the processes which are discussed below should not be overlooked, and we will look at some of these in various articles (see Experimental). For now, it can be said that since the discovery of microsecond (x 10-6 sec) flash photolysis by Norrish and Porter in the 1950’s, each decade has seen another power of ten on the limit of time that can be studied culminating in Zewail’s development of femtosecond (x 10-15 sec) spectroscopy in the 1990’s. This is at the limit of atomic vibrations and indeed electron transfer, and so is probably a “true” limit, as beyond this the Heisenberg Uncertainty Principle becomes significant. Scientists at either end of the timescale, Norrish and Porter, and Zewail, won Nobel prizes for their efforts. these developments will be covered in more detail in a future article.

So what is the fate of the excited state? When a molecule absorbs light, it is a very fast process – on the order of picoseconds or lower. Depending on the wavelength of light used, and the Franck-Condon principle, above, the vibrational levels of some upper excited state will be populated with electron density. The various processes which occur can be represented on a Jablonski diagram, a sketch of the electronic energy levels in an atom together with their vibrational levels.

A Jablonksi diagram for an organic molecule. Radiative processes (those which are "vertical" in energy transfer) are shown in solid lines whereas non-radiative processes ("horizontal" energy transfer) are shown using dotted lines

A Jablonksi diagram for an organic molecule. Radiative processes (those which are "vertical" in energy transfer) are shown in solid lines whereas non-radiative processes ("horizontal" energy transfer) are shown using dotted lines. Indicative timescales are shown, although are molecule dependant.

In principle the Jablonski diagram is similar to the transitions in the potential energy curves, shown above, except the potential energy curves are usually not represented. A simple Jablonski diagram for an organic molecule is shown above. Note that a similar diagram for an inorganic compound will also include metal orbitals, so will be different in style. The processes which occur when a molecule absorbs light are below. We will discuss the kinetics of these processes in a separate post, looking at how they can be measured.

  1. Molecule absorbs light and populates upper excited state S* with electrons
  2. Electrons in upper vibrational levels of S* undergo vibrational relaxation and the electrons move to the lowest vibrational level of S*.
  3. The molecules very quickly dissipate this very high energy by internal conversion – the electron density moves to the lowest excited state, S1. Internal conversion occurs by the electron density transferring from the vibrational levels of the upper excited state to vibrational levels of a lower excited state which they are overlapping. Hence this is a “horizontal energy” transition, or a radiationless transition – it does not give off a photon of energy (light) as the electron density has not moved in one “big jump”.
  4. Vibrational relaxation again occurs, and the electron is now in the lowest vibrational state of S1. This is a statement of Kasha’s rule, which says that photochemical processes (fluorescence, quenching) happen from the lowest vibrational state of the lowest excited state (S1). The reason for this is that the processes described above leading to this situation all occur in a matter of picoseconds. The electron now has a choice of what to do next
  5. It may undergo fluorescence, giving off a photon of energy.
  6. It may undergo internal conversion as above.
  7. The electron may undergo intersystem crossing (ISC) to the triplet state. Once here, the molecule can undergo phosphorescence or deactivation. These processes are shown in the Jablonski diagram. Note the timescales involved in the various processes.

3. Conclusion

Light absorption can result in the formation of an (electronically) excited state, which has different chemical properties to the groud state. The intensity and shape of absorption spectra are a result of the nature of excitation between ground and excited states. Various processes result in the deactivation of the excited state.  The timescales of these indicate their efficiency, and we will look at these in more detail in future posts.

4. References

All general photochemistry texts discuss the principles of light absorption and deactivation of the excited state in good detail. some are given below, but any will give pretty much the same information.

Gilbert, A. and Baggott, J. E., Essentials of molecular photochemistry, Blackwell Scientific: London, 1991.

Turro, N. J., Ramamurthy, V. and Scaiano, J. C., Principles of molecular photochemistry: an introduction, University Science Books:Sausalito, 2009. Despite the title, a detailed text with lots on the various photophysical processes that occur on light absorption. These three authors are among the best known photochemists today. Turro’s classic, Modern Molecular Photochemistry, was for a long time the bible for photochemistry.